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Abstract
Sustainable mobility behavior remains a challenging objective, as individuals rarely alter their transportation
habits solely for environmental benefits. Creating effective incentives can prompt change, but first, it requires
a comprehensive understanding of mobility patterns. This paper examines the prediction of personal travel
activities (including next-trip forecasting and activity classification) utilizing recent journey data collected through
a mobility application. A graph-based fusion ensemble that include a graph convolutional network and a statistical
user patterns is designed for structured prediction that includes multiple outputs like origin and destination,
transportation mode, time. An explainable prediction pipeline is built on top of this ensemble. The results are
then converted to a knowledge graph that allows us to run a sophisticated analysis and helps improve our weekly
workflows.
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1. Introduction

Achieving sustainable transportation patterns is challenging since individuals rarely modify estab-
lished routines solely for environmental benefits. Key considerations encompass personal convenience
(overcrowded transit deterring usage), network development (separate cycling corridors), capability
requirements, motivation systems (e.g., notifications or rewards, and inclusive design features. If
individuals are to change their behavior, the proposed benefits of the motivation systems must exceed
the perceived advantages of continuing current practices, including financial savings, comfort zones,
and ingrained patterns.

The AI-CENTIVE project’s primary goal is to use neural network architectures to understand trans-
portation behaviors in Austrian urban transit zones and identify the most effective reward structures to
encourage a shift towards eco-friendly travel options, such as using bicycles or public transit instead
of private vehicles for urban commuting. The research involves developing ensembles that combine
statistical patterns and graph convolutional networks (GCNs). Our experiments quantify environmental
impacts by combining baseline predictions with simulated incentives across mobility networks.

The main contribution presented in this paper is the semantic conversion workflow developed to
support explainable AI predictions. The output of the GCNs is converted into a mobility knowledge
graph, and the best predictions are analyzed using SPARQL queries.

The paper is organized as follows: Section 2 offers a brief overview of related work, Section 3 describes
the general method, while Section 4 presents the explainability pipeline and the associated analysis
that can be performed with it. The paper concludes with a brief overview and future work.
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2. Related Work

This brief section covers only graph mobility network surveys and related work on explainability.
Examining graph-based computational methods, Jiang’s survey [1] catalogs traffic applications, and

model variations, including standard graph networks, convolutional adaptations, and unsupervised
graph encoders. Expanding this scope significantly, Wang et al. [2] provides detailed analysis cover-
ing broader transportation applications: vehicle storage systems, safety enhancement, autonomous
navigation, and metropolitan design optimization.

Beyond academic surveys identifying research directions, practical implementation insights from the
Google Maps arrival prediction system [3] deserve particular attention through detailed experimental
variations and qualitative performance evaluation on actual transportation data. Notable mention
regarding Google concerns their adaptive approach toward evolving privacy regulations shown by
shifting personal movement histories onto individual devices.

Understanding model decision processes remains crucial for discovering inherent biases often stem-
ming from unbalanced training samples. Schwalbe and Finzel [4] deliver extensive examination syn-
thesizing over fifty specialized surveys addressing interpretability challenges across computational
domains. Wang et. al [2] focus on knowledge graph related research in smart city domain which was
the starting point of our mobility graph idea for fast analysis idea presented in this paper.

3. Method

A core challenge the AI-CENTIVE project addresses is the observation that individuals are often
unwilling to change their mobility habits solely for environmental reasons. To overcome this, the
project’s overarching mission is to develop AI-based incentivization techniques to influence citizens’
mobility choices, utilizing multimodal models of mobility activity and data analytics. The ultimate
vision is to enable and incentivize Austrian citizens to adopt more sustainable mobility choices.

The work presented here builds upon the Ummadum platform which allows users to log their
sustainable mobility activities via a mobile app. This process reports CO2 emissions reductions to
raise users’ sustainability awareness and rewards sustainable behavior to incentivize environmentally
friendly choices. The AI-CENTIVE community within Ummadum serves to engage participants, assess
the effectiveness of incentives, conduct pilot tests for integrating AI-driven solutions, and plan rollout
strategies across Austria. All trip data is collected with user consent, strictly adhering to GDPR best
practices by anonymizing user identities and locations for analysis.

The project’s dataset for examining Vienna mobility patterns was provided by Ummadum. This
commuter dataset comprises approximately 450,000 user trips collected between January 2024 and
April 2025 from users of the Ummadum mobile app. The dataset focuses on activities such as biking,
walking, public transport, and car sharing (as a rider or driver), also including data about activity status
(e.g., cancelled, finished). To maintain GDPR compliance and route anonymity, user data and trip data
are anonymized, with segments added or removed from trips. Locations for origins and destinations
are expressed through zip codes, and information about location type (e.g., office, public venue) is
also collected. The dataset also includes details on the incentives provided, such as points, rewards,
carsharing, community types administering rewards, or activity challenges where users earn additional
rewards based on their activity levels.

The project’s approach towards incentivization primarily involves rewards and notifications. Rewards
include classic elements like: i) challenges; ii) lotteries, or iii) collection of points for sustainable activities.
Notifications are displayed directly to the users based on their past history. Three types of notifications
were implemented: i) success notifications to motivate participants based on their previous sustainable
mobility actions; ii) AI recommendation notifications to suggest future sustainable mobility options
using contextual information such as behavior, mobility preferences, location, and time; and iii) weather
notifications for notable weather events. Explanations for the AI notifications are included, based
on past user history. These notifications are part of a simple workflow that runs automatically each



Monday morning, scheduling notifications after checking eligibility criteria (e.g., high confidence, no
more than one notification per user per day).

Initial insights from the first 2025 pilot program indicated a total CO2 savings of 331 tons. These
insights were used to refine a second pilot in 2025. This second pilot incorporates improvements such as
explainable AI notifications (justifying notifications based on the user’s history, including similar trips
or partial routes), weather alerts, and enhanced challenges within the rewards system. The overall goal
of the second pilot was to test and refine AI-driven incentivization techniques to encourage sustainable
mobility choices among Austrian citizens using the Ummadum platform.

We have examined several models designed for a structured prediction task that simultaneously
forecasts multiple outputs, including trip origin and destination locations, hour and day of the trip,
activity type, distance, and duration. These models, including Transformer and GCN ensembles that
include statistical models (e.g., ARIMA, XGBoost) are presented in a previous publication [5]. The best
model was an ensemble that combines statistical user patters (e.g., temporal and spatial patterns related
to the past trips, including same origin or destination, or time intervals) and a GCN architecture.

To enhance transparency and regulatory compliance of our Graph Neural Network mobility predic-
tions, we developed a semantic conversion pipeline that transforms prediction outputs into structured
RDF knowledge graphs. This approach addresses the requirements of the European AI Act for explain-
able AI systems in transportation applications.

Our system employs a multilayered semantic framework combining established ontologies with
custom ontologies 1. The core structure integrates PROV-O (W3C Provenance Ontology) [6] for
comprehensive provenance tracking, allowing full traceability from input data through model inference
to final predictions. Temporal relationships are modeled using the W3C TIME [7] ontology, providing a
standardized representation of trip scheduling and duration predictions.

Figure 1: Semantic conversion workflow for Explainable AI predictions.

For mobility-specific concepts, we defined custom RDF vocabularies in the modultech.eu/aicentive
namespace, establishing classes such as TripPrediction, PredictionExplanation, and PatternEvidence.
These vocabularies maintain compatibility with existing transport standards like GTFS (General Transit
Feed Specification) while extending semantic representation for explainable AI applications. The
explainability vocabulary captures structured reasoning through properties that include routeFrequency,
timeFrequency, and activityFrequency, allowing systematic analysis of prediction confidence factors.
Each prediction entity links to explanation instances that contain machine-readable pattern evidence
and human-readable justification text.

The conversion pipeline automatically processes GNN outputs into RDF using rdflib, preserving all
prediction metadata including confidence scores, historical pattern evidence, and explanatory reasoning.
The resulting knowledge graph enables direct SPARQL querying without database infrastructure,
1The ontologies were designed for offline use and are publicly available through GitHub -
https://github.com/modultechnology/aicentiveontologies



supporting complex analytical queries for model evaluation and regulatory auditing. Semantic queries
can systematically identify low-confidence predictions, analyze temporal patterns in model performance,
and extract compliance reports for regulatory review. This queryable format facilitates automated
detection of prediction biases and supports continuous model improvement through pattern analysis.

4. Evaluation

This semantic conversion enables sophisticated analytical capabilities through SPARQL querying that
would be difficult or impossible with traditional CSV formats. Researchers can execute complex queries
to identify high-confidence predictions for regulatory audit trails, systematically analyze low-confidence
routes that require model improvement, and investigate user behavior patterns by correlating confidence
scores with historical pattern evidence (see Table 1).

Table 1
Example SPARQL Queries for Semantic Mobility Dataset Analysis

Query Purpose SPARQL Query

Top High-Confidence
Predictions

PREFIX mob: <http://modultech.eu/aicentive/mobility#>
SELECT ?trip ?user ?confidence ?activity

?origin ?destination
WHERE {

?trip a mob:TripPrediction ;
mob:hasUser ?user ;
mob:hasConfidence ?confidence ;
mob:hasActivity ?activity ;
mob:hasOrigin ?origin ;
mob:hasDestination ?destination .

}
ORDER BY DESC(?confidence)
LIMIT 500

Low-Confidence Routes
Requiring Model Im-
provement

PREFIX mob: <http://modultech.eu/aicentive/mobility#>
SELECT ?origin ?destination

(AVG(?confidence) as ?avg_confidence)
(COUNT(*) as ?prediction_count)

WHERE {
?trip mob:hasOrigin ?origin ;

mob:hasDestination ?destination ;
mob:hasConfidence ?confidence .

FILTER(?confidence < 0.3)
}
GROUP BY ?origin ?destination
ORDER BY ?avg_confidence
LIMIT 20

User Behavior Pattern
Analysis

PREFIX mob: <http://modultech.eu/aicentive/mobility#>
PREFIX expl: <http://modultech.eu/aicentive/explanation#>
SELECT ?user ?activity

(AVG(?confidence) as ?avg_confidence)
(AVG(?route_freq) as ?avg_route_familiarity)

WHERE {
?trip mob:hasUser ?user ;

mob:hasActivity ?activity ;
mob:hasConfidence ?confidence ;
mob:hasExplanation ?exp .

?exp expl:hasPatternEvidence ?pattern .
?pattern expl:routeFrequency ?route_freq .

}
GROUP BY ?user ?activity
HAVING (COUNT(*) > 5)
ORDER BY DESC(?avg_confidence)

The semantic structure supports automated quality assurance through queries that filter predictions
by confidence thresholds, group routes by performance metrics, and extract explanation metadata for
transparency reporting. Beyond basic filtering, the pipeline enables advanced analytical patterns such as
identifying users with consistently high prediction confidence, discovering temporal patterns in model



performance, and analyzing the relationship between route familiarity and prediction accuracy. The
explainability metadata becomes queryable, allowing researchers to systematically study which types
of historical evidence correlate with prediction success and identify biases in model performance across
different user groups or activity types. This semantic approach transforms static prediction output into a
dynamic knowledge graph that supports continuous model evaluation, regulatory compliance reporting,
and data-driven insights for model improvement. The standardized format also enables integration
with other transportation data sets and supports collaborative research through interoperable semantic
web technologies. Most importantly, queryable explanations provide the foundation for automated
compliance checking required by emerging AI regulations, while simultaneously supporting research
into the relationship between explainability quality and prediction accuracy.

One particular advantage of this approach is speed. It is generally 3x-5x times faster than the pure
CSV approach. This is mainly due to the SPARQL engines being optimized for triple pattern matching
than traditional SQL or pandas operations on CSV data. The processing efficiency is higher also due to
SPARQL’s lazy evaluation mechanism (e.g., only process the data needed to answer specific queries)
and selective loading (e.g., retrieving only data needed for each analysis). RDFlib itself is also optimized
to handle larger datasets more efficiently through streaming.

Table 1 showcases several SPARQL queries that are routinely used for explainable mobility analysis.
Table 2 presents the kind of automated analysis that can be done automatically on top of the evaluation
results. All the results presented in this table refer to the last week of evaluation from our second pilot.

Table 2
Semantic Explainability Evaluation Summary

Evaluation Category Metric Result

High-Confidence Predictions

Retrieved Predictions 500
Confidence Range 0.733 – 1.000
Mean Confidence 0.798
Median Confidence 0.770

User Coverage
Total Users 791
Users in Top 500 92
Coverage Percentage 11.6%

Activity Distribution (Top 500)

BIKE 176 (35.2%)
WALK 157 (31.4%)
CAR_DRIVER 97 (19.4%)
PT 43 (8.6%)
CAR_RIDER 27 (5.4%)

The semantic approach directly addresses EU AI Act mandates for transparency and auditability
in AI applications. The structured explainability format enables automated compliance monitoring
and systematic verification of AI decision-making processes. Beyond regulatory compliance, the
standardized RDF format enhances research reproducibility and enables integration with broader
smart city transportation planning systems, positioning our work at the intersection of responsible AI
development and practical mobility applications.

5. Conclusion

Our research combines various forecasting approaches for urban transportation pattern analysis across
larger city environments such as Vienna. The potential combinations when merging different prediction
techniques appears limitless. We have merely scratched the surface regarding possible architectural
integrations. Particular attention was paid to blending conventional statistical methods with advanced
learning frameworks, recognizing how easily established techniques are overlooked amid technolog-
ical advancements. Statistical approaches often deliver substantial value despite newer alternatives.



More complex ensembles frequently introduce additional challenges, including extended computation
requirements, elaborate technical infrastructure demands, and troubleshooting complexity. Integrating
classic statistical models with deep learning architectures allows us to avoid such challenges, as the
resulting models are simple and efficient.

The semantic conversation pipeline and the rapid analysis it enables represents one of the highlights
of our projects. Due to examining the results through such tools, we were able to quickly improve our
best model, and also deliver high quality notifications to our community members.

Future investigations will incorporate emissions calculations from the carbon assessment tool devel-
oped by project partner BOKU to evaluate environmental benefits across different reward mechanisms.
This enables concrete quantification regarding pollution reduction achieved through altered journey
selections. Additionally, data about weather conditions will enhance the ensemble accuracy.

Building widespread participation in eco-friendly journey choices remains equally crucial. Monitoring
increased adoption rates of sustainable options helps evaluate progress in behavioral transformation.
Furthermore, we intend to target problematic urban locations lacking vehicle storage facilities or
convenient transit access within a reasonable walking range. Quantifying improvements within these
zones demonstrates enhanced accessibility plus livability improvements. Such enhanced measurements
strengthen our predictive capabilities while supporting inclusive, evidence-based approaches toward
sustainable transportation development. Through our project initiatives, we aim to empower community
members and organizational stakeholders in creating more responsive, equitable, and environmentally
responsible urban transit zones.
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